پایان نامه ارائه مدلی برای شناسایی عوامل اثرگذار و ضریب تاثیر آنها در سود و زیان بیمه شخص ثالث خود
نوشته شده توسط : admin

دانشگاه شیراز

واحد بین الملل

 

پایان‌نامه کارشناسی ارشد

در رشته‌ی کامپیوتر –  مهندسی نرم افزار

 

 

 

ارائه مدلی برای شناسایی عوامل اثرگذار و ضریب تاثیر آنها در سود و زیان بیمه شخص ثالث خودرو شرکتهای بیمه بوسیله روشهای داده کاوی مطالعه موردی شرکت سهامی بیمه ایران

 

 

استاد راهنما:

دکترغلامحسین دستغیبی فرد

 

 

بهمن ماه 1392

برای رعایت حریم خصوصی نام نگارنده پایان نامه درج نمی شود

(در فایل دانلودی نام نویسنده موجود است)

تکه هایی از متن پایان نامه به عنوان نمونه :

(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)

چکیده

بررسی اطلاعات بیمه های اتومبیل نشان داده عواملی چون نوع استفاده خودرو، داشتن گواهینامه رانندگی، نوع گواهینامه و تطابق یا عدم تطابق آن با وسیله نقلیه، مبلغ حق بیمه، میزان تعهدات بیمه نامه، کیفیت خودروی خودرو سازان، سن راننده، سواد راننده، عدم تطابق حق بیمه با مورد بیمه، تاخیردرتمدید بیمه نامه، در سود و زیان شرکت های بیمه تاثیر داشته اند.

هدف این پایان نامه شناخت عوامل اثرگذار و ضریب تاثیر آنها در سود و زیان بیمه شخص ثالث خودرو شرکت های بیمه با استفاده از روش داده کاوی و  سپس انتخاب الگوریتمی که بهترین میزان دقت پیش بینی برای تشخیص این عوامل را داشته اند می باشد.

نتیجه حاصل از این پژوهش نشان می دهد که روشهای داده کاوی با استفاده از الگوریتم های دسته بندی با دقت بالای 91% و الگوریتم های درخت تصمیم با دقت بالای 96% و الگوریتم های خوشه بندی با ایجاد خوشه های قابل قبول  قادر به ارائه مدلی برای تشخیص عوامل اثرگذار و تعیین میزان اثر آنها در سود و زیان بیمه نامه شخص ثالث خودرو خواهند بود.

 

کلیدواژگان: داده کاوی ـ بیمه شخص ثالث خودرو ـ سود و زیان

فهرست مطالب

عنوان                                                                                        صفحه

 

فصل اول مقدمه

1-1 تعریف داده کاوی.. 3

1-2 تعریف بیمه. 4

1-3 هدف پایان نامه. 4

1-4 مراحل انجام تحقیق.. 4

1-5 ساختار پایان نامه. 5

 

فصل دوم: ادبیات موضوع و تحقیقات پیشین

2-1 داده کاوی و یادگیری ماشین.. 7

2-2 ابزارها و تکنیک های داده کاوی.. 8

2-3 روشهای داده کاوی.. 9

2-3-1 روشهای توصیف داده ها 10

2-3-2 روشهای تجزیه و تحلیل وابستگی 10

2-3-3 روشهای دسته بندی و پیشگویی.. 10

2-3-4 درخت تصمیم. 11

2-3-5 شبکه عصبی.. 12

2-3-6 استدلال مبتنی بر حافظه. 12

2-3-7 ماشین های بردار پشتیبانی.. 13

2-3-8 روشهای خوشه بندی 13

2-3-9 روش K-Means 13

2-3-10 شبکه کوهنن.. 14

2-3-11 روش  دو گام. 14

2-3-12 روشهای تجزیه و تحلیل نویز. 14

2-4 دسته های نامتعادل]صنیعی آباده 1391[. 15

2-4-1 راهکار مبتنی بر معیار 15

2-4-2 راهکار مبتنی بر نمونه برداری.. 15

2-5 پیشینه تحقیق.. 16

2-6 خلاصه فصل. 19

 

فصل سوم: شرح پژوهش

3-1 انتخاب نرم افزار 21

3-1-1 Rapidminer 21

3-1-2 مقایسه RapidMiner   با سایر نرم افزار های مشابه. 21

3-2 داده ها 25

3-2-1 انتخاب داده 25

3-2-2 فیلدهای مجموعه داده صدور 25

3-2-3 کاهش ابعاد. 25

3-2-4 فیلدهای مجموعه داده خسارت.. 29

3-2-5 پاکسازی داده ها 29

3-2-6 رسیدگی به داده های از دست رفته. 29

3-2-7 کشف داده دور افتاده 30

3-2-8 انبوهش داده 32

3-2-9 ایجاد ویژگی دسته. 32

3-2-10 تبدیل داده 32

3-2-11 انتقال داده به محیط داده کاوی.. 32

3-2-12 انواع داده تعیین شده 33

3-2-13 عملیات انتخاب ویژگیهای موثرتر. 34

3-3 نتایج اعمال الگوریتم PCA و الگوریتم های وزن دهی.. 34

3-4 ویژگی های منتخب جهت استفاده در الگوریتمهای حساس به تعداد ویژگی.. 36

3-5 معیارهای ارزیابی الگوریتمهای دسته بندی.. 37

3-6 ماتریس درهم ریختگی.. 37

3-7 معیار AUC. 38

3-8 روشهای ارزیابی الگوریتم های دسته بندی.. 39

3-8-1 روش Holdout 39

3-8-2 روش Random Subsampling. 39

3-8-3 روش Cross-Validation. 40

3-8-4 روش Bootstrap. 40

3-9 الگوریتمهای دسته بندی.. 41

3-9-1 الگوریتم KNN.. 42

3-9-2 الگوریتم Naïve Bayes 42

3-9-3 الگوریتم Neural Network. 43

3-9-4 الگوریتم   SVM   خطی.. 45

3-9-5 الگوریتم   رگرسیون لجستیک.. 46

3-9-6 الگوریتم  Meta Decision Tree. 47

3-9-7 الگوریتم درخت Wj48. 49

3-9-8 الگوریتم درخت Random forest 51

3-10 معیارهای ارزیابی الگوریتم های مبتنی بر قانون(کشف قوانین انجمنی) 54

3-10-1 الگوریتم FPgrowth. 55

3-10-2 الگوریتم Weka Apriori 55

3-11 معیارهای ارزیابی الگوریتمهای خوشه بندی.. 55

3-12 الگوریتم های خوشه بندی.. 57

3-12-1 الگوریتم K-Means 57

3-12-2 الگوریتم Kohonen. 60

3-12-3 الگوریتم دوگامی.. 64

 

فصل چهارم: ارزیابی و نتیجه گیری

4-1 مقایسه نتایج. 69

4-2 الگوریتمهای دسته بندی.. 69

4-3 الگوریتم های دسته بندی درخت تصمیم. 70

4-4 الگوریتم های خوشه بندی.. 79

4-5 الگوریتم های قواعد تلازمی(مبتنی بر قانون) 81

4-6 پیشنهادات به شرکت های بیمه. 81

4-7 پیشنهادات جهت ادامه کار 83

 

منابع و مأخذ

فهرست منابع فارسی.. 84

فهرست منابع انگلیسی.. 85

 

 

 

 

فهرست جدول‌ها

 

عنوان                                                                                        صفحه

 

جدول شماره 3-1:  نتایج رای گیری استفاده از نرم افزارهای داده کاوی………………………………… 24

جدول شماره 3-2: فیلدهای اولیه داده های صدور…………………………………………………………………….. 26

جدول شماره 3-3: فیلدهای نهایی داده های صدور…………………………………………………………………… 27

جدول شماره 3-4: فیلدهای  حذف شده داده های صدور و علت حذف آنها………………………… 28

جدول 3-5:  فیلدهای استخراج شده از داده های خسارت……………………………………………………….. 28

جدول 3-6: نتایج  نمودار boxplot………………………………………………………………………………………………. 31

جدول 3-7: انواع داده استفاده شده…………………………………………………………………………………………….. 33

جدول 3-8: نتایج حاصل از اجتماع فیلدهای با بالاترین وزن در الگوریتمهای مختلف…………… 37

جدول 3-9: ماتریس در هم ریختگی رکوردهای تخمینی(Predicted  Records)…………………… 38

جدول 3-10: قوانین استخراج شده توسط الگوریتم Fpgrowth……………………………………………… 55

جدول 3-11: قوانین استخراج شده توسط الگوریتم Weka Apriori……………………………………….. 55

جدول 3-12: تنظیمات پارامترهای الگوریتم K-Means……………………………………………………………. 57

اجرا برای 9 خوشه در الگوریتم K-Means………………………………………………………………………………….. 60

جدول 3-13: تنظیمات پارامترهای الگوریتم Kohonen……………………………………………………………. 64

جدول 3-14: تنظیمات پارامترهای الگوریتم دوگامی………………………………………………………………… 69

جدول 4-1: مقایسه الگوریتم های دسته بند………………………………………………………………………………. 70

جدول 4-2: مقایسه الگوریتم های دسته بند درخت تصمیم…………………………………………………….. 70

جدول 4-3: ماتریس آشفتگی قانون شماره 1…………………………………………………………………………….. 71

جدول 4-4: ماتریس آشفتگی قانون شماره 2…………………………………………………………………………….. 72

جدول 4-5: ماتریس آشفتگی قانون شماره 3 الف……………………………………………………………………… 72

جدول 4-6: ماتریس آشفتگی قانون شماره 3 ب……………………………………………………………………….. 72

جدول 4-7: ماتریس آشفتگی قانون شماره 3 ج………………………………………………………………………… 73

عنوان                                                                                        صفحه

 

جدول 4-8: ماتریس آشفتگی قانون شماره 3 د…………………………………………………………………………. 73

جدول 4-9: ماتریس آشفتگی قانون شماره 3 ه………………………………………………………………………….. 73

جدول 4-10: ماتریس آشفتگی قانون شماره 3 و………………………………………………………………………. 74

جدول 4-11: ماتریس آشفتگی قانون شماره 3 ز………………………………………………………………………. 76

جدول 4-12: ماتریس آشفتگی قانون شماره 4………………………………………………………………………….. 76

جدول 4-13: ماتریس آشفتگی قانون شماره 5………………………………………………………………………….. 77

جدول 4-14: ماتریس آشفتگی قانون شماره 6 الف…………………………………………………………………… 77

جدول 4-15: ماتریس آشفتگی قانون شماره 6 ب…………………………………………………………………….. 78

جدول 4-16: ماتریس آشفتگی قانون شماره7……………………………………………………………………………. 78

جدول 4-17: ماتریس آشفتگی قانون شماره8……………………………………………………………………………. 79

جدول 4-18: مقایسه الگوریتم های خوشه بندی………………………………………………………………………. 79

جدول 4-19: فیلدهای حاصل از الگوریتم های خوشه بندی……………………………………………………. 80

جدول 4-20: نتایج الگوریتم های FpGrowth, Weka Apriori……………………………………………….. 81

فهرست شکل‌ها

 

عنوان                                                                                        صفحه

 

شکل شماره3-1: داده از دست رفته فیلد” نوع بیمه ” پس از انتقال به محیط داده کاوی…… 33

شکل 3-2:  نتایج الگوریتمPCA …………………………………………………………………………………………………. 34

شکل 3-3:  نتایج الگوریتم SVM Weighting در ارزشدهی به ویژگی ها………………………………. 35

شکل 3-4: نتایج الگوریتم Weighting Deviation  در ارزشدهی به ویژگی ها………………………. 35

شکل 3-5: نتایج الگوریتم Weighting Correlation در ارزشدهی به ویژگی ها……………………… 36

شکل 3-6:  نمای کلی استفاده از روشهای ارزیابی……………………………………………………………………… 41

شکل 3-7:  نمای کلی استفاده از یک مدل درون یک روش ارزیابی………………………………………… 42

شکل 3-8:  نمودار AUC الگوریتم KNN………………………………………………………………………………….. 42

شکل 3-9:  نمودار AUC الگوریتم Naïve Bayes…………………………………………………………………….. 43

شکل 3-10:  تبدیل ویژگی های غیر عددی به عدد در الگوریتم شبکه عصبی……………………… 44

شکل 3-11:  نمودار AUC و ماتریس آشفتگی الگوریتم Neural Net……………………………………. 44

شکل 3-12:  تبدیل ویژگی های غیر عددی به عدد در الگوریتم  SVM  خطی……………………. 45

شکل 3-13 :  نمودار AUC الگوریتم  SVM Linear……………………………………………………………….. 46

شکل 3-14 :  نمودار AUC الگوریتم  رگرسیون لجستیک………………………………………………………. 47

شکل 3-15 : نمودار AUC الگوریتم  Meta Decision Tree……………………………………………………. 48

شکل 3-16 : قسمتی از نمودارtree الگوریتم  Meta Decision Tree……………………………………… 49

شکل 3-17 :  نمودار radial الگوریتم  Meta Decision Tree………………………………………………….. 49

شکل 318نمودار AUC الگوریتم  Wj48……………………………………………………………………………….. 50

شکل 3-19 :  نمودار tree الگوریتم  Wj48………………………………………………………………………………… 51

شکل 3-20 :  نمودار AUC الگوریتم  Random forest…………………………………………………………… 52

شکل 3-21 :  نمودار تولید 20 درخت در الگوریتم  Random Forest………………………………….. 53

شکل 3-22 :  یک نمونه درخت تولید شده توسط الگوریتم  Random Forest…………………….. 53

عنوان                                                                                        صفحه

 

شکل 3-23 : رسیدن درصد خطا به صفر پس از 8مرتبه………………………………………………………….. 57

شکل 3-24 : Predictor  Importance for K-Means……………………………………………………………… 58

شکل 3-25 : اندازه خوشه ها و نسبت کوچکترین خوشه به بزرگترین خوشه در الگوریتم

K-Means……………………………………………………………………………………………………………………………………….59

شکل 3-26 : کیفیت خوشه ها در الگوریتمMeans K-…………………………………………………………….. 60

شکل 3-27 : Predictor  Importance for Kohonen……………………………………………………………… 61

شکل 3-28 : اندازه خوشه ها و نسبت کوچکترین خوشه به بزرگترین خوشه در الگوریتم

Kohonen……………………………………………………………………………………………………………………………………….62

شکل 3-29 : کیفیت خوشه ها در الگوریتمMeans K-…………………………………………………………….. 63

شکل 3-30 : تعداد نرون های ورودی و خروجی در Kohonen……………………………………………….. 63

شکل 3-31 : Predictor  Importance for  دوگامی…………………………………………………………………. 64

شکل 3-32 : اندازه خوشه ها و نسبت کوچکترین خوشه به بزرگترین خوشه در

الگوریتم دوگامی…………………………………………………………………………………………………………………………….. 65

شکل 3-33 : کیفیت خوشه ها در الگوریتم دوگامی………………………………………………………………….. 66

شکل4-1: نمودارنسبت تخفیف عدم خسارت به خسارت…………………………………………………………… 75

مقدمه

 

 

شرکتهای تجاری و بازرگانی برای ادامه بقا و حفظ بازار همواره بر سود دهی و کاهش ضرر و زیان خود تاکید دارند از این رو  روشهای جذب مشتری و همچنین تکنیکهای جلوگیری یا کاهش زیان در سرلوحه کاری این شرکتها قرار می گیرد.

از جمله شرکتهایی که بدلایل مختلف در معرض کاهش سود و یا افزایش زیان قرار می گیرند شرکتهای بیمه ای می باشند. عواملی همچون بازاریابی، وفاداری مشتریان، نرخ حق بیمه، تبلیغات، تقلب، می تواند باعث جذب یا دفع مشتری گردد که در سود و زیان تاثیر مستقیم و غیر مستقیم دارد.

پرداخت خسارت نیز به عنوان تعهد شرکتهای بیمه  منجر به کاهش سود و در بعضی موارد موجب زیان یک شرکت بیمه می شود. خسارت می تواند بدلایل مختلف رخ دهد و یا عملی دیگر به گونه ای خسارت جلوه داده شود که در واقع اینچنین نیست[Derrig et. al 2006].

عواملی از قبیل فرهنگ رانندگی، داشتن گواهینامه رانندگی، نوع گواهینامه و تطابق یا عدم تطابق آن با وسیله نقلیه، جاده های بین شهری و خیابانهای داخل شهر که شهرداری ها و ادارات راه را به چالش می کشد، تقلب، وضعیت آب و هوا، کیفیت خودروی خودرو سازان، سن راننده، سواد راننده، عدم تطابق حق بیمه با مورد بیمه [Wilson 2003]، روزهای تعطیل، مسافرتها و بسیاری موارد دیگر می توانند موجب خسارت و در نهایت افزایش زیان یک شرکت بیمه ای گردند.

برای دانلود متن کامل پایان نامه اینجا کلیک کنید





لینک بالا اشتباه است

برای دانلود متن کامل اینجا کلیک کنید

       
:: بازدید از این مطلب : 724
|
امتیاز مطلب : 0
|
تعداد امتیازدهندگان : 0
|
مجموع امتیاز : 0
تاریخ انتشار : دو شنبه 7 تير 1395 | نظرات ()
مطالب مرتبط با این پست
لیست
می توانید دیدگاه خود را بنویسید


نام
آدرس ایمیل
وب سایت/بلاگ
:) :( ;) :D
;)) :X :? :P
:* =(( :O };-
:B /:) =DD :S
-) :-(( :-| :-))
نظر خصوصی

 کد را وارد نمایید:

آپلود عکس دلخواه: